设函数y=f(x)(x∈R,且x≠o)对任意非零实数x,y,都有f(xy)=f(x)+f(y)成立.
判断f(x)的奇偶性
人气:396 ℃ 时间:2020-02-05 16:20:34
解答
f(xy)=f(x)+f(y)
则可知,当令y=-1时
f(-x)=f(x)+f(-1)
而又可知当令x=y=-1时
f(1)=f(-1)+f(-1)
令x=y=1时
f(1)=f(1)+f(1)
故可知,f(1)=0, f(-1)=0
所以f(-x)=f(x)
即f(x)为偶函数
推荐
猜你喜欢
- 造句:天衣无缝和相安无事,要造一个句子,不能分开
- 习作:我喜欢的书中人物------200字左右
- 一根钢管长5米,平均截成8段,每段是这根钢管的(—);5段是这根钢管的(—),长(—)米
- 今天的事是我的错,对不起,请大家原谅,如果大家不能谅解,我会选择离开用英语怎么说啊
- 高一地理问题
- huo是三拼音节吗
- 水果店远处两框苹果共75千克.如果将甲框苹果的6分之1装入乙框,这时,甲乙两框苹果重量比是2;3,甲乙原来两框各有多少千克苹果
- 2a-3b/9=3a-2b/3=2