sinx=(2tanx/2)/[1+(tanx/2)^2] 怎样证明?
人气:210 ℃ 时间:2020-02-03 15:07:16
解答
sinx
=sin[2(x/2)]÷1
=[2sin(x/2)cos(x/2)]/[sin²(x/2)+cos²(x/2)]
分子分母同除以cos²(x/2)
=[2sin(x/2)/cos(x/2)]/[sin²(x/2)/cos²(x/2)+1]
=2tan(x/2)]/[tan²(x/2)+1]
=右边
命题得证
推荐
- 证明tanx^2-sinx^2=tanx^2 * sinx^2
- 证明:tanx sinx / (tanx -sinx)=(tanx+sinx) / tanx sinx
- 求证:(sin x+cos x−1)(sin x−cos x+1)sin 2x=tanx/2.
- 求证:sinx(1+tanxtanx/2)=tanx.
- 证明:(sinX*tanX)/(tanX-sinX)=(tanX+sinX)/(tanX*sinX)
- 在△ABC中,角A,B,C所对的边长分别为a,b,c,且COS(A+B)/2=1/2
- 在等差数列中,a1+a3=8,且a4为a2,a9的等比中项,求此数列的首项,公差,前n项和
- when waiting for the message from the one you love .10086 is the biggest en
猜你喜欢