如何证明:1平方+2平方+3平方+……+n平方=n(n+1)(2n+1)/6
请给出详细证明!
(另外,请不要用 数学归纳法和待定系数法来求证)
因为我想知道人们最初是怎么把这个求和公式的结果推导出来的.
人气:242 ℃ 时间:2019-10-06 21:59:30
解答
1^2+2^2+3^2+……+n^2=(1^2+1)+(2^2+2)+(3^2+3)+……+(n^2+n)-n(n+1)/2=2[(2*1)/2+(3*2)/2+(4*3)/2+……+n*(n+1)/2]-n(n+1)/2=2(C22+C32+C42+……+C(n+1)2)-n(n+1)/2,(C22表式C2选2,C32表式C3选2……)=2(C33+C32+C42...
推荐
猜你喜欢
- The new dress looks very nice.(改为感叹句,每空一词) ___ _
- 已知x=1时,ax^5+bx^3-cx+3的值为10,那么x=-1时,ax^5+bx^3-cx+17值
- (x-y)的五次方*(y-x)的五次方+【(x-y)五次方】的²
- 匡衡字稚圭,匡衡勤学而无烛.邻居有烛而不逮,衡乃穿壁引其光,以书映光而读之.邑人大姓文不识,家富多书,衡乃与其佣作而不求偿.主人怪问衡,衡曰:“愿得主人书遍读之.”主人感叹,资给以书,遂成大学.匡衡.字稚圭.勤学而无烛.邻舍有烛而不逮.衡乃
- co2缓冲液既可以释放co2又可以产生co2吗
- 数学函数极限和连续题
- x的2次方-2xy+y的2次方-2x+2y+1=?
- enrich-membership是什么意思