已知A=x3-2y3+3x2y+xy2-3xy+4,B=y3-x3-4x2y-3xy-3xy2+3,C=y3+x2y+2xy2+6xy-6,试说明对于x、y、z的任何值A+B+C是常数.
人气:192 ℃ 时间:2019-08-18 14:52:08
解答
因为A+B+C=x3-2y3+3x2y+xy2-3xy+4+y3-x3-4x2y-3xy-3xy2+3+y3+x2y+2xy2+6xy-6=1,
所以,对于x、y、z的任何值A+B+C是常数.
推荐
猜你喜欢
- We walk( )the bridge and get to school every day
- I look good in red,so I _____ red.A.prefer B.would rather
- 原核细胞(无线粒体)中ATP只能依靠无氧呼吸产生——这句话为什么是错误的?
- 万户那种勇于实践的探索精神,人们的内心深处受到了极大的震撼和鼓舞(改病句)
- 设事件A,B 独立且互不相容,则min{P(A),P(B)}=()?写出解题步骤啊?知道答案但不知道为什么,答案是0
- 城镇污水处理厂进水标准
- 若实数ρ,θ满足3ρcos∧2 (θ)+2ρsin∧2 (θ)=6cosθ,则ρ的平方的最大值为?
- 筑路大军同心协力,克服重重困难,终于胜利贯通了(修改病句)