设过抛物线x^2=2py (p>0) 对称轴上的定点F(0,m) (m>0)作直线AB与抛物线交于A,B两点,
且A(x1,y1),B(x2,y2)(x10),相应于点F的直线l:y=-m称为抛物线的“类准线”
(1) 若x1x2=-4m,求抛物线方程
(2)过点A(x1,y1)作“类准线”l:y=-m的垂线,垂足为A1,求证:A1,O,B三点共线(O为坐标原点)
(3)若点M是“类准线”L上的任一点,记直线MA,MB,MF的倾斜角依次为,D,E,F 试探求D,E,F余切之间的关系式,并给出证明.
人气:173 ℃ 时间:2020-04-08 18:10:01
解答
(1).设AB的方程:y=kx+m ,代入抛物线方程得:x^2-2pkx-2pm=0
x1x2=-2pm=-4m,p=2 ,故抛物线方程是:x^2=4y
(2).A1(x1,-m),O(0,0),B(x2,x2^2/4) ,k(OB)=x2/4 ,k(OA1)=-m/x1=(x1x2/4)/x1=x2/4
k(OB)=k(OA1) ,故:A1,O,B三点共线
(3) .设M(x0,-m) ,当x0=0时,cotE=0,tanD=k(MA)=(y1+m)/x1=(x1^2+4m)/4x1,
tanF=k(MB)=(y2+m)/x2=(x2^2+4m)/4x2
cotD+cotF=...=0 ,cotD+cotF=cotE
当x0不等于0时,同理可得
推荐
- 已知抛物线y1=x2+2(m+2)x+m-2与x轴交与ab两点(a在b左侧),且对称轴为x=-1 (1)求m的值并画出这线
- 过抛物线y2=2x的对称轴上的定点M(m,0),(m>0),作直线AB交抛物线于A,B两点. (1)试证明A,B两点的纵坐标之积为定值; (2)若△OAB的面积的最小值为4,求m的值.
- 过抛物线y2=2px(p>0)的对称轴上的定点M(m>0),作直线AB与抛物线相交于A、B两点.若点N是定直线l:x=-m上的任一点,试探究三条直线AN、BN、MN的斜率之间的关系,并给出证明.
- 抛物线问题:线段AB过x轴正半轴上一定点M(m,0)(m>0),端点A,B到x轴的距离之积为2m,以x轴为对称轴,过A,...
- 过抛物线 x^2=4y对称轴上的定点M(0,2)作直线AB与抛物线交于AB两点,点N为直线y=-2上任一点,记直线NA,
- he has just had a chocolate bar.这句怎么两个have?这是什么结构?
- 1.判断关于x的方程,x的平方-mx〔2x-m+1〕=x是不是一元二次方程,如果是,指出各项系数2.试证明关于x的方程〔R的平方-8R+18〕x的平方+2Rx+1=0,不论R取何值,该方程都是一元二次方程
- 杭州市出租车收费标准如下:3公里以内(含3公里)收费10元,超过3公里的部分每公里收费2元.超过起步里程10公里以上的部分加收50%,即每公里3元.(不足1公里以1公里计算) (1)小明一
猜你喜欢