AB为⊙O的直径,OC⊥AB,E为OB上的一点,弦AD⊥CE交OC于点F,求证OE=OF
人气:457 ℃ 时间:2019-08-18 14:52:57
解答
设EC和AD交与点G.
因为 AD⊥CE,OC⊥AB
推荐
- 已知如图,AB 为圆O的直径,半径 OC垂直于 AB,E为OB上的一点,弦AD垂直于CE交OC于点F,求证:OE=OF.
- ab为圆o的直径,半径oc垂直于ab,e为ob上一点,弦ad垂直于ce交oc于f,求证,oe=of
- 如右图 已知AB为圆O的直径,半径OC⊥AB,E为OB上一点,弦AD⊥CE交OC于点F,探索线段OE与OF的关系,说明理由
- AB是半圆O的半径,半径OC⊥AB,E为OB上的一点,弦AD⊥CE,垂足为G.猜想OE与OF的数量关系,证明
- 已知,AB为圆O的直径,CD是弦,BE⊥CD于E,AF⊥CD于F,连接OE,OF,求证: (1)OE=OF; (2)CE=DF.
- 尊敬教师的名言
- 为什么对称轴为x=3?
- 已知平行六面体ABCD-A1B1C1D1,化简向量AB+向量AD+1/2向量CC1
猜你喜欢