已知集合A={x|x∈R,ax^2 -3x+2=0,a∈R}.若A中至多有一个元素,求a的取值范围.
a=0或a>=9/8
我知道a=0但不知道 为什么a>=9/8.
为什么b^2-4ac要
人气:221 ℃ 时间:2019-11-25 00:36:06
解答
集合A={x|x∈R,ax^2 -3x+2=0,a∈R}.若A中至多有一个元素,则有两种情况
1,集合只有一个元素;因为题目中并没有指明方程ax^2 -3x+2=0是一元二次方程,所以a可以是任意的值.当a=0,此时方程ax^2 -3x+2=0变为-3x+2=0是一个一元一次方程,且方程的解为x=2/3,此时方程只有一个解,即集合A只有一个元素;当a不等于0时,此时方程ax^2 -3x+2=0是一元二次方程,因为集合A只有一个元素,所以方程有且仅有一个根,因此判别式应等于0,即9-8a=0,解得a=9/8
2,集合是一个空集时.因为在1中讨论了当a=0时,方程有一解,此时集合A非空,和假设不符,所以在假设条件下a不等于0,那么就有一元二次方程ax^2 -3x+2=0无解,这样就要求判别式是小于0的,即有9-8a<0,a>9/8
综上所述就有了a的取值范围是a=0或a>=9/8
推荐
- 已知集合A={x∈R|ax2-3x+2=0,a∈R},若A中元素至多有1个,则a的取值范围是_.
- 已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围是( ) A.a≥98 B.a≥98或a=0 C.a<98或a=0 D.a<98
- 已知集合A={x|x∈R,ax^2 -3x+2=0,a∈R}.若A中至少有一个元素,求a的取值范围.
- 已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围是( ) A.a≥98 B.a≥98或a=0 C.a<98或a=0 D.a<98
- 已知集合A={x|ax2-3x+2=0}至多有一个元素,则a的取值范围是( ) A.a≥98 B.a≥98或a=0 C.a<98或a=0 D.a<98
- 给我几个数学动脑筋的题目
- 55,22,52是中心对称图形吗
- 甲,乙两数的和是3.52,如果甲数的小数点向左移一位,就和乙数相等,甲,乙两数各
猜你喜欢