如图,在Rt△ABC中,以直角边AB为直径的圆O交斜边于D,OE平行BC交AC于E.求证:(1)DE是圆O的切线
(2)OE是Rt△ABC的中位线
人气:499 ℃ 时间:2019-09-23 20:38:15
解答
证明(1)DE与半圆O相切.证明:连接OD、OE.∵O、E分别是BA、BC的中点,∴OE∥AC,∴∠BOE=∠BAC,∠EOD=∠ADO,∵OA=OD,∴∠ADO=∠BAC.∴∠BOE=∠EOD.∵OD=OB,OE=OE,∴△OBE≌△ODE.∴∠ODE=∠OBE=90°.∴DE与半圆...
推荐
- 已知:如图,以Rt△ABC的直角边AC为直径作⊙O,交AB于D点,OE∥AB交BC于E点,求证:DE为⊙O的切线.
- 以Rt三角形ABC的直角边AC为直径的半圆O,交斜边于点D,OE平行bc叫AB于点E,求证:DE是圆的切线
- 以RT三角形ABC的直角边为直径,作半圆O,交斜边于D,OE平行AC交AB于E,求证DE是圆O的切线
- 如图,在Rt三角形abc中,角C=90度,以AC为直径作圆O,交AB于D,过点O作OE//AB,交BC于E(1)证:ED为圆O切线 (2
- 已知:如图,以Rt△ABC的直角边AC为直径作⊙O,交AB于D点,OE∥AB交BC于E点,求证:DE为⊙O的切线.
- 知丑的不知足,
- 在△ABC中,猜想T=sinA+sinB+sinC的最大值,并证明.
- 用NA表示阿伏加德罗常数,下列叙述正确的是
猜你喜欢