> 数学 >
∫√(e^x+1)dx 上限ln2下限0
主要是换元时怎么算
∫√(e^x-1)dx 上限ln2下限0
应该是-1
人气:279 ℃ 时间:2020-03-28 19:44:46
解答
换元整体令√(e^x+1)=t
所以x=ln(t^2-1)
原式=∫tdln(t^2-1)
=∫t*2t/(t^2-1)dt
=∫(2t^2-2+2)/(t^2-1)dt
=∫[2+2/(t^2-1)]dt
=2t|(0,ln2)+∫(1/(t-1)-1/(t+1))dt
=2ln2+ln|(t-1)/(t+1)||(0,ln2)
至于你写错了就更简单了
也是令t=√(e^x-1),t=ln(t^2+1)
原式=∫tdln(t^2+1)
=∫2t^2/(1+t^2)dt
=∫(2t^2+2-2)/(t^2+1)dt
=∫2dt-2∫1/(t^2+1)dt
=2-2arctant|(0,1)
=2-2arctant1
=2-π/2
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版