证明:若lim(x->+无穷)f(x)=0,且g(x)在(a,+无穷)有界,则lim(x->+无穷)f(x)g(x)=0
人气:379 ℃ 时间:2019-12-13 06:17:14
解答
因为g(x)在(a,+∞)有界,所以│g(x)│≤M ,x∈(a,+∞).其中M是一正数.又因为limf(x)=0(x趋向正无穷大) 所以对任意正数ε,存在正数x0,当x>x0时,│f(x)│
推荐
- 设函数f(x)在区间[a,+∞)上连续,有lim(x→+∞)f(x)存在且有限.证明:f(x)在[a,+∞)上有界
- 设函数f(x)有界,又lim(x→∞)g(x)=0,证明:lim(x→∞)f(x)g(x)=0(证明过程)
- 若f(x)在[a,b)上连续,且lim f(x) (x->b-) 存在,证明f(x)在[a,b)上有界.
- 证明:设函数f(x)在区间(-∞,+∞)上连续,有lim(x→+∞)f(x)存在且有限.证明:f(x)在 (-∞,+∞)上有界
- x→∞,lim f(x)=A 证明存在正数X 使得f(x)在(-∞,-X)∪(x,+无穷大)有界
- 怎么判断是 dsp2 sp3d dsp3 sp3d2 d2sp3 杂化类型!
- 若a的绝对值等于负a,则实数a在数轴上的对应点一定在?
- psychedelic silhouette 如何读?
猜你喜欢