已知在△ABC内,∠BAC=60°,∠C=40°,PQ分别在BC,CA上,且AP,BQ分别是∠BAC,∠ABC的
人气:210 ℃ 时间:2019-09-27 16:12:10
解答
在三角形ABC内角BAC=60°角ACB=40°P.Q分别在BC.CA上 AP.BQ分别为角BAC、角ABC的平分线 .求BQ+AQ=AB+BP
证明:
做辅助线PM‖BQ,与QC相交与M.
(首先算清各角的度数)
∵∠APB=180°—∠BAP—∠ABP=180°—30°—80°=70°
且∠APM=180°—∠APB—∠MPC=180°—70°—∠QBC(同位角相等)=180°—70°—40°=70°
∴∠APB=∠APM
又∵AP是BAC的角平分线,
∴∠BAP=∠MAP
AP是公共边
∴△ABP≌△AMP(角边角)
∴AB=AM,BP=MP
在△MPC中,∠MCP=∠MPC=40°
∴MP=MC
∴AB+BP=AM+MP=AM+MC=AC
在△QBC中
∵∠QBC=QCB=40°
∴BQ=QC
∴BQ+AQ=AQ+QC=AC
∴BQ+AQ=AB+BP
8
推荐
- 如图已知△ABC内,∠BAC=60°,∠C=40°,PQ分别在BC,CA上,且AP,BQ分别是∠BAC,∠ABC的平分线.
- 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证: (1)BQ=CQ; (2)BQ+AQ=AB+BP.
- 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证: (1)BQ=CQ; (2)BQ+AQ=AB+BP.
- 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证: (1)BQ=CQ; (2)BQ+AQ=AB+BP.
- 如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC的角平分线.求证: (1)BQ=CQ; (2)BQ+AQ=AB+BP.
- 476年,西罗马帝国灭亡,标志着什么的开始?
- 联合国在它成立50周年前夕,得到了一份珍贵的生日礼物——由中国人赠送的巨型青铜
- 一个圆环,内圆直径是2分米,环宽1分米,圆环的面积是_.
猜你喜欢