设函数f(x)=(1-1/x)的绝对值,x>0证明当0<a<b且f(a)=f(b)时,ab>1
人气:107 ℃ 时间:2019-08-18 18:21:56
解答
当x>0时,1-1/x是递增函数所以由当0<a<b且f(a)=f(b)时可知f(a)=-(1-1/a)=1/a-1,f(b)=1-1/b所以1/a-1=1-1/b,即1/a+1/b=2又因为0<a<b,可得a+b>2√(ab)(√为根号)2=1/a+1/b=(a+b)/(ab)>2√(ab)/(ab)=2/√(ab)...
推荐
猜你喜欢
- The students are working ____ a model plane.A.to B.in C.with D.on 为什么
- 英语:____the diamond,he had to look for a place to hide it.【空格是填Having stolen?还是Stolen?
- 已知椭圆的对称轴是坐标轴,离心率e=1/3,长轴长为12,求椭圆的标准方程,
- 圆O内切于Rt△ABC,角C=90°,D,E,F是切点,若AD=6cm,BD=4cm,则Rt三角形的内切圆半径为_cm
- 《我是大自然中的一员》作文500字
- 哪些酸不是分子晶体?
- 一棵树长大至少要几年时间
- 火星大气和地球比密度小?