设f(x)在[0,+∞)上连续,单调减少,0〈a〈b,求证a∫(0,b)f(x)dx≤b∫(0,a)f(x)dx
人气:410 ℃ 时间:2020-03-08 00:40:30
解答
a∫(0,b)f(x)dx≤b∫(0,a)f(x)dx
则[∫(0,b)f(x)dx]/b≤[∫(0,a)f(x)dx]/a
由于设f(x)在[0,+∞)上连续,单调减少,0〈a〈b,上面不等式直观意义就是平均值越来越小
设F(x)=[∫(0,x)f(t)dt]/x
则只需证明F(x)单调下降即可
F'(x)=(xf(x)-∫(0,x)f(t)dt)/x*x=(∫(0,x)(f(x)-f(t))dt)/x*x
推荐
- 设f(x)在[a,b]上可导,且f'(x)≤M,f(a)=0,求证∫(a,b)f(x)dx≤M/2(b-a)^2
- 设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
- 函数f(x)在[0,1]上单调减少且可积,证明:∫(a,0)f(x)dx=a∫(1,0)f(x)dx.(0
- 设函数f(x)在【a,b】上连续且单调增加,求证∫[a ,b] xf(x)dx >=a+b/2∫[a ,b] f(x)dx
- 设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0
- 2.Kite-f_______ is very popular in China
- 求10道初三分式化简求值求值题+答案.
- I have read ____ of the young writer?
猜你喜欢
- jan has lunch at twelve 对 at twelve 提问
- 一瓶2升的果汁喝了10分之3,还剩多少毫升
- 把长8cm,宽3cm,高3cm的长方体锯成一个最大的正方体,锯掉部分的体积是多少?
- 象公路 水路 铁路还有什么路?
- 温室效应,臭氧空洞,酸雨分别是什么引起的?
- 一个最简分数,它的分子分母的积是100,这个最简分数是( )
- 求曲线y=1/2x^2,x^2+y^2=8所围成的图形面积
- 已知向量a,b满足| a |=1 b=(2,1)且λ a+b=0 则 |λ |=