>
数学
>
已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它们交于H.求证:
(1)AE=EC;
(2)AH=2BD.
人气:485 ℃ 时间:2019-08-19 09:29:19
解答
证明:(1)∵CE是△ABC的高,
∴∠AEC=90°,
∵∠CAB=45°,
∴∠ACE=45°=∠CAE,
∴AE=EC.
(2)∵AD,CE都是△ABC的高,
∴∠AEH=∠CEB=∠ADC=90°,
∵∠AHE=∠CHD,∠EAH+∠AEH+∠AHE=180°,∠BCE+∠CHD+∠ADC=180°,
∴∠EAH=∠BCE,
在△AEH和△CEB中,
∠AEH=∠CEB
AE=EC
∠EAH=∠ECB
,
∴△AEH≌△CEB(ASA),
∴AH=BC,
∵AB=AC,AD是△ABC的高,
∴BC=2BD,
∴AH=2BD.
推荐
已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它们交于H.求证: (1)AE=EC; (2)AH=2BD.
已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它们交于H.求证: (1)AE=EC; (2)AH=2BD.
已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它们交于H.求证: (1)AE=EC; (2)AH=2BD.
已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它们交于H.求证: (1)AE=EC; (2)AH=2BD.
已知△ABC是等腰三角形,AB=AC,∠BAC=45°,AD,CE都是△ABC的高,它们交于H.求证: (1)AE=EC; (2)AH=2BD.
小学三年级语文应如何复习?
what's the love what's love
如何评价陶渊明的桃花源诗的理想
猜你喜欢
英语问题(每格一词)
What is the hardest thing about learning to ride a bicycle? 什么是最难的事关于学会乘驾自行车?
【这本书不是用汉语写的】汉译英
复分解 -- -- 习题 ··············
某小区要建一个下沉式花坛,这个花坛的底面半径为10米,下沉(花坛底面至地面的距离)1米.
两层书共有112本,若将第二层的1/9移到第一层,两层书的本数相等,第二层原有多少本书?
已知双曲线的中心在原点,坐标轴为对称轴,且与圆x^2+y^2=17交于点A(4,-1),若圆在点A处的切线与双曲线
分流定律表达式?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版