∴2RsinAcosB-2RsinBcosA=
3 |
5 |
即sinAcosB-sinBcosA=
3 |
5 |
∵sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB,②
将②代入①中,整理得sinAcosB=4cosAsinB,
∴
sinA |
cosA |
sinB |
cosB |
即tanA=4tanB;
∵tan(A-B)=
tanA−tanB |
1+tanAtanB |
3tanB |
1+4tan2B |
3 | ||
|
3 | ||
2
|
3 |
4 |
∴tan(A-B)的最大值为
3 |
4 |
故答案为
3 |
4 |
3 |
5 |
3 |
5 |
3 |
5 |
sinA |
cosA |
sinB |
cosB |
tanA−tanB |
1+tanAtanB |
3tanB |
1+4tan2B |
3 | ||
|
3 | ||
2
|
3 |
4 |
3 |
4 |
3 |
4 |