证明质数的个数是无穷的
P.S.用反证法,写出每一步的得出原因
人气:214 ℃ 时间:2020-03-22 09:33:30
解答
质数是无穷的.
这个命题的证法有很多,其中,较容易理解的是古希腊欧几里得的证法.此外,较著名的还有欧拉的证法等.
欧几里得的证法如下:
(反证法)
假设,质数是有限的,存在最大的质数P
那么,构造这样一个数A
A=2×3×5×7×……×P+1
即A是从2到P所有质数的乘积再加上1.
这样,利用任何一个质数去除A,都会余1,即任何质数都无法整除A.根据指数的定义,A是一个质数.
显然,A比P大的多
这与假设“P是最大的质数”矛盾.
故假设不成立,质数是无穷的
推荐
猜你喜欢
- 英语作文,因特网的重要性
- 解方程2分之1x+25%=10
- 初中宾语从句讲解
- 请问Mr.Green-_is a teacher 中间填英语单词
- anyting,you,to read,interesting,do,have连词成句急
- 设测站O点高程HO=37.32m,仪器高i=1.45m,盘左望远镜上仰时读数小于水平时读数90°,采用视距测量方法,测
- 关于基因工程的题
- () one's prime,其中的介词是什么?