已知关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是整数).求证:方程有两个不相等的实数根.
人气:371 ℃ 时间:2019-10-17 05:24:45
解答
证明:k≠0,
△=[-(4k+1)]2-4k(3k+3)
=4k2-4k+1
=(2k-1)2,
∵k为不等于0的整数,
∴(2k-1)2>0,
∴△>0,
∴方程有两个不相等的实数根.
推荐
- 已知关于x的一元二次方程kx2-(4k+1)x+3k+3=0(k是整数).求证:方程有两个不相等的实数根.
- 已知:关于x的一元二次方程kx²-(4k+1)+3k+3=0(k是整数).若方程的两个实数根为X1、X2(X1<X2),设y=X1-X2,求证y是变量k的函数.
- 已知关于x的一元二次方程kx²+(k+1)x+k/4=0有两个不相等的实数根.①求k的取值范围.②是否存在实数k,使方程的两个实数根的倒数和等于1?若存在求k值,若不存在,说明理由.
- 求证:关于x的一元二次方程x2-(2k-1)x-3k-3=0总有两个不同的实数根.
- 已知关于x的一元二次方程kx²-(4k+1)x+3k+3=0(k是整数).
- 中等号左边添上运算符号和括号,使结果等于右边的数,3,3,3,3,=7
- 758的平方减258的平方 429的平方减571的平方 因式分解
- 六年级上册语文第三单元作文300字或200字
猜你喜欢