设A是m*n矩阵,秩A=r,则非齐次线性方程组AX=b最多有n–r个线性无关解.这个命题是对的吗?
人气:144 ℃ 时间:2020-06-15 15:11:58
解答
不对,
若非齐次线性方程组AX=b有解,设α是它的一个特解,
因为对于的齐次线性方程组AX=0的基础解系中含有n–r个线性无关的解,设为
a1,a2,...,an-r
则不难证明α,α+a1,α+a2,...α+an-r是非齐次线性方程组AX=b的n-r+1个线性无关的解.
推荐
- 设m×n矩阵A的秩r(A)=n-3(n>3),α,β,γ是齐次线性方程组Ax=0的三个线性无关的解向量,则方程组Ax=0的基础解系为( )
- 设非齐次线性方程组Ax=b的系数矩阵的秩为r,而η1,η2,...ηn-r+1是它的n-r+1个线性无关的解,求证
- 非齐次线性方程组Ax=b中未知数的个数为n,方程个数为m,系数矩阵A的秩为r,则( ).
- 设A是m×n矩阵,非齐次线性方程组Ax=b有解的充分条件是r(A)=m
- 设AX=0是n元齐次线性方程组,若系数矩阵A的秩r(A)=r
- the call is busy now~
- 已知函数f(x)=x2+ax+b的两个零点是-2和3 (1)求a+b的值. (2)求不等式af(-2x)>0的解集.
- 换个角度思考问题和换个角度看待事情一样?
猜你喜欢