已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是______.
人气:325 ℃ 时间:2019-08-18 19:05:12
解答
设椭圆方程为x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n. 在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(m+n)2-2mn=4a2-2mn,∴4c2=4a2-3mn.即3mn=4a2-4c2. 又mn≤(m+n2)2=a2(当且...
推荐
- 已知点F1,F2是椭圆的两个焦点.点P在椭圆上,∠F1PF2=60度,求椭圆离心率的取值范围
- 已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是_.
- 已知F1 F2是椭圆的两个焦点,P为椭圆上的一点 ∠F1PF2=60度
- 已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是_.
- 已知F1,F2是椭圆的两焦点,P为椭圆上一点,若∠F1PF2=60°,则离心率e的范围是_.
- 六年级有150人,女生比男生多20%,男女生各多少人?
- 已知y=y1+y2,y1与x成正比例,y2与x²成反比例.且x=2时y=0,当x=-1时,y=4½,求y与x之间的函数关系
- 《农夫耕田》的翻译
猜你喜欢