试证明关于x的方程(a2-8a+20)x2+2ax+1=0无论a取何值,该方程都是一元二次方程.
人气:120 ℃ 时间:2020-05-01 03:22:44
解答
证明:∵a2-8a+20=(a-4)2+4≥4,
∴无论a取何值,a2-8a+20≥4,即无论a取何值,原方程的二次项系数都不会等于0,
∴关于x的方程(a2-8a+20)x2+2ax+1=0,无论a取何值,该方程都是一元二次方程.
推荐
猜你喜欢
- 两条直线相交产生几个角?
- 不( )意( )田填成语
- 现在有沼气发电,风发电,海浪发电等等.能不能在火山里搞个发电厂,让火山的能量给我们发电?
- 高中集合 集合A={[x,y]ly=alxl},B={[x,y]ly=x^2,x∈R},C=A交B,且集合C为单元素集合,则实数a的取值范围为
- 一个数由4个1和7个1/10组成,这个数写作( ),它的分数单位是( ),它的倒数是( ).
- 上今下衣是什么字
- 题1:设f(x)=limx^n/(2+x^2n),则f(x)的间断点是:(注:题中是n→∞的极限,x^n为x的n次方,x^2n为x的2n次方)
- 左边一个单人旁右边个全字读什么