数列an,a1=1,n>=2,an=(根号下sn +根号sn-1)/2,求数列根号sn为等差数列,及an通项
人气:126 ℃ 时间:2019-11-02 21:36:56
解答
sn-s(n-1)=an=[√sn+√s(n-1)]/2 √sn-√s(n-1)=1/2 √sn-√s1=(n-1)/2 √sn=(n+1)/2 √sn为等差数列 sn=(n+1)(n+1)/4 an=sn-s(n-1)=(n+1)(n+1)/4-n*n/4=(2n+1)/4 (n>=2) n=1时 an=1 n>1时 an=(2n+1)/4...
推荐
- 已知等差数列{an}的前n项之和为Sn,a1=1+根号2.S3=9+3根号2
- 设正项数列{an}前n项和是sn,若{an},{根号下sn}都是等差数列,且等差相等,则a1等于?
- 数列an ,a1=1,当n>=2时,an=(根号sn+根号sn-1)/2,证明根号sn是等差数列,求an
- 数列an,a1=1,n>=2,an=(根号下sn +根号sn-1)/2,求数列根号sn为等差数列,及an通项
- 设数列{an}是首项为a1(a1>0),公差为2的等差数列,前n项和为Sn,且根号S1,根号S2,根号S3成等差数列,
- 1.Be quick,( ) we will be late for the football match
- 农田生态系统中的生物因素有_,非生物因素有_.
- VmLAl2(SO4)3溶液中含Al3+ag,取V/4mL,并加水稀释至4VmL,则稀释后SO42-物质的量浓
猜你喜欢