等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△ABC的周长是( )
A. 9
B. 12
C. 9或12
D. 不能确定
人气:400 ℃ 时间:2019-08-17 16:15:27
解答
∵关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,
∴△=(b+2)2-4(6-b)=0,即b2+8b-20=0;
解得b=2,b=-10(舍去);
①当a为底,b为腰时,则2+2<5,构不成三角形,此种情况不成立;
②当b为底,a为腰时,则5-2<5<5+2,能够构成三角形;
此时△ABC的周长为:5+5+2=12.
故选B.
推荐
- 等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△ABC的周长是( ) A.9 B.12 C.9或12 D.不能确定
- 在等腰三角形ABC中,三边长分别为a,b,c,其中a=5,且关于x的方程x方=(b+2)x+6-b=0有两个相等的实数根,
- 等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△ABC的周长是( ) A.9 B.12 C.9或12 D.不能确定
- 已知关于x的方程x^2-(k+2)x+2k=0,若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个实数根,
- 在等腰三角形ABC中,角A角B角C的对边为a,b,c,已知a=3,b和c是关于x的方程x^2+mx+2-1/2m=0的两个实数根求三角形ABC的周长.
- 写一篇有关一个人物群体的作文,800字左右.
- 一物体在某行星上做自由落体运动,在连续的两个1s内,下降的高度分别为20m和28m,若该星球的半径为2000km,则环绕该行星的卫星的最小周期为多少?(写出完整步骤)
- 正弦函数y=sinx°的最小正周期T=_,最大值是_
猜你喜欢