| 1 |
| 2 |
=
| 1 |
| 2 |
| 3 |
| 2 |
令t=log2x,则y=
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 8 |
∵2≤x≤4,∴1≤t≤2.
当t=
| 3 |
| 2 |
| 1 |
| 8 |
∴函数的值域是[-
| 1 |
| 8 |
(2)令t=log2x,得
| 1 |
| 2 |
| 3 |
| 2 |
∴m≥
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
设g(t)=
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
∴g(t)=
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| t |
| 3 |
| 2 |
∵g(1)=0,g(2)=0,
∴g(t)max=0,∴m≥0.
故m的取值范围是[0,+∞).
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 8 |
| 3 |
| 2 |
| 1 |
| 8 |
| 1 |
| 8 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| t |
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| t |
| 3 |
| 2 |