证明:设A,B分别是m,n阶方阵,则分块矩阵 0 A B C 的行列式 = (-1)^mn |A||B|.
人气:272 ℃ 时间:2019-10-23 09:58:30
解答
将A的第1列依次与前一列交换 (不改变B的各列之间的相对位置)
一直交换到第1列,共交换n次
同样,A的第2列依次与前一列交换,一直交换到第2列,共交换n次
......
交换mn次,化为
A 0
C B
所以行列式 = (-1)^mn |A||B|.既然每一列都要交换n次,为什么不是(-1)^n^n呢不是 A的每一列交换n次, A一共m列, 所以共交换mn次.所以是 (-1)^mnB,C的交换呢C在A的下方,A的列交换, 当然是指整列交换,
推荐
猜你喜欢
- 2减2的平方,减2的立方,减2的4次方,再减…(按这样减下去),再减2的19次方,最后加2的20次方
- n个4的平方加n个3的平方的开方等于几
- 1.Simon began to learn English two years ago.(同义句)
- 柯西公式在高中有什么应用?可以的话举个例子.
- 求一篇水仙花的观察日记,要简短,50字左右.
- 有三堆棋子,数量一样多,且只有黑白两色.第一堆的黑子与第二堆的白子一样多,第三堆的白子占全部白子的
- Said too much,think too much as silence I'd feel
- 英语作文my.family 要有比较级六年级