f(x)为偶函数,x≥0时,f(x)单调递减,解不等式f(lgx)<f(1)
人气:374 ℃ 时间:2019-08-21 13:26:38
解答
因为f(x)为偶函数,所以f(x)=f(|x|),
又当x≥0时,f(x)单调递减,所以不等式f(lgx)<f(1)等价于
|lgx|>1,即lgx>1或lgx<-1.
所以有x>10或0<x<1/10.
即不等式f(lgx)<f(1)的解集为{x|x>10或0<x<1/10}.
推荐
猜你喜欢
- happiness is for everyone.求译!
- 写小数时,整数部分仍按( )的写法,整数部分是0的要写( ).
- 《人民解放军百万大军横渡长江》一文是按什么顺序报道三路军的渡江作战的?为什么这样安排顺序?
- 屏风,纳凉,帷幕,缓冲,造型,伧俗、雅俗之别造句
- To turn your dream into reality,you should first ______the hard life here which you has not got used to so far
- 足球循环赛中,红队胜黄队,比分为4:1,黄队胜蓝队,比分为1:0,蓝队胜红队,比分为1:0,算各队的净胜球数.
- 2.2*(-2.1)+1.21*4.2-2.1*0.22简算!
- it took him three hours to clean his bedroom的同义句