利用极限定义证明:lim根号下(x^2-1)=跟3 x→2
人气:292 ℃ 时间:2019-08-17 12:39:06
解答
利用极限定义证明:lim(x→2)√(x^2-1) = √3 .
证明 限 |x-2|0,要使
|√(x^2-1)-√3| = |x^2-4|/|√(x^2-1)+√3| < |x+2||x-2|/√3 < 5|x-2|/√3 < ε,
只需 |x-2| < min{1,√3ε/5},取 η = min{1,√3ε/5},则当 0
推荐
猜你喜欢
- 若温度计水银球放在支管口以下位置,会导致收集的产品中 混有低沸点杂质;若温度计水银球放在支管口以上位置,会导致收集的产品中混有高沸点杂质;分别解释两种情况,为什么会产生高低沸点的杂质
- 你说的那个|3-2a|+|b+1/3|=0 求A、B 的值是多少啊 是咋算的哇
- 在三角形ABC中,角B=2倍的角A,AD平分角BAC,求证AC=AB+BD,图,
- 请根据g=mg,p=f/s等公式推导静止在水平桌面上的均匀圆柱体对桌面的压强为p=pgh
- 某元素原子中4S能级有两个电子,为什么这种元素是Ca?
- 机械运动是不是只有 平动 和 转动?能不能同时进行?或有没有其他的?
- 在三角形ABC中,角C=90°,AD是BC边上的中线,DE垂直AB于E,求证AC^2=AE ^2-BE ^2
- 英语翻译