> 其他 >
点B、C、E在同一直线上,点A、D在直线CE的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线AE、BD交于点F.

(1)如图①,若∠BAC=60°,则∠AFB=______,如图②,若∠BAC=90°,则∠AFB=______;
(2)如图③,若∠BAC=α,则∠AFB=______(用含α的代数式表示)证明这个结论.
人气:217 ℃ 时间:2020-01-29 13:58:31
解答
(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,
∴△ABC∽△EDC,
∴∠CBD=∠CAE,
∴∠AFB=180°-∠CAE-∠BAC-∠ABD
=180°-∠BAC-∠ABC
=∠ACB,
∴∠AFB=60°,
同理可得:∠AFB=45°,
故答案为:60°,45°;
(2)∠AFB=90°−
1
2
a

证明:∵AB=AC,EC=ED,∠BAC=∠CED
∴△ABC∽△EDC,
BC
DC
AC
EC

∵∠BCD=∠ACE,
∴△BCD∽△ACE,
∴∠CBD=∠CAE.
∠AFB=∠CBD+∠AEC=∠CAE+∠AEC=∠ACB.
∵AB=AC,∠BAC=a,
∴∠ACB=90°−
1
2
a

∴∠AFB=90°−
1
2
a
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版