求定积分,【从-π/2到π/2】[(1+x)cosx]/(1+sinx^2) dx
答案是π/2,原题中还有一部分是ln[x+(1+x^2)^1/2]因为是奇函数等于0,就不用再算了.
人气:189 ℃ 时间:2019-10-10 01:16:45
解答
xcosx/(1+sinx^2)这项也是奇函数,所以是0只剩下cosx/(1+sinx^2)了积分(-π/2到π/2) [ cosx/(1+sinx^2) ]dx=积分(-π/2到π/2) [ 1/(1+sinx^2) ]dsinx=arctan(sinx) | (-π/2到π/2)=2arctan1=π/2...
推荐
猜你喜欢
- 明天要测试数学第五单元,我数学成绩最烂了,而且,请问各位正负数的加减法怎么计算的?
- DNA聚合酶与DNA连接酶有什么区别?
- 人类历史上发生过哪些大规模的战争
- 过二点可以画()条射线
- 平面直角坐标平面内,A点坐标是(—3,—3),那么A点关于原点的对称点是________
- 跟我100到小数点的数学题,加法25个,减法15到,乘法25道,除法25道完后一定给分.
- 一道简便计算
- 用函数单调性证明Sinx>2x/π