证明:函数y=x3^在R上单调递增
人气:310 ℃ 时间:2020-02-04 00:47:31
解答
任取x1,x2属于R,x1x1^3-x2^3=(x1-x2)(x1^2+x1x2+x2^2)
因为x1-x2<0
当x1,x2同号,显然x1^2+x1x2+x2^2>0
当x1,x2异号,(x1+x2)^2>0 故x1^2+x1x2+x2^2>-x1x2>0
综上,x1^2+x1x2+x2^2>0
故x1^3-x2^3<0
所以y=x^3单调递增
推荐
猜你喜欢
- 工程队修一条长300米的路,第一天修的米数如果再加上9米,正好是全长的7/20,工程队第一天修了这条路的百分之几?
- ——,——,——,——,——,——等分类单位进行分类?
- 已知3的A次方=4,9的B次方=8,27的C次方=10,求27的A+3C-2B次方的值
- this flower is very beautiful改为感叹句
- never的短语
- 三角形的三个顶点分别在曲线xy=a(0
- 1/2x+1>-3 -2x-4<4x+4 2x+1>3 2-x<1 2(x+1)<3x 3(2x+2)≥4(x-1)+7 x/2+1>x 2/3x≤1/3(x-2)
- 用记忆犹新造句