设a为常数,且a>1,0≤x≤2π,则函数f(x)=cos2x+2asinx-1的最大值为( )
A. 2a+1
B. 2a-1
C. -2a-1
D. a2
人气:175 ℃ 时间:2019-08-17 22:19:02
解答
f(x)=cos2x+2asinx-1=1-sin2x+2asinx-1=-(sinx-a)2+a2,
∵0≤x≤2π,∴-1≤sinx≤1,
又∵a>1,所以最大值在sinx=1时取到
∴f(x)max=-(1-a)2+a2=2a-1.
故选B.
推荐
- 设a为常数,a>1,0≤x≤2π,则函数f(x)=cos^2+2asinx-1的最大值为多少?
- 设a为常数,且a>1,0≤a≤2π,则函数f(x)=cos²x+2asinx-1的最大值为
- 设a为常数 且a>1 0≤x<2π 则函数f(x)=cos^2x+2asinx-1最大值为
- 已知x属于【0,2pai],a为常数,求函数y=cos^2x+2asinx-1的最大值
- 设a为常数,且a>1,0小于等于x小于等于2派,求函数f(x)=cos方x+2asinx-1的最大值
- you shouldn't be late to class again 改错
- 化简[(ab+1)(ab-1)-2a^2b^2+1]/ab
- he asked his daughter what she wanted him to dring for her
猜你喜欢