>
数学
>
如图,四棱锥P-ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点.
(1)证明:EF∥面PAD;
(2)证明:面PDC⊥面PAD.
人气:326 ℃ 时间:2019-10-01 20:14:56
解答
(1)如图,连接AC,∵ABCD为矩形且F是BD的中点,∴AC必经过F.(2分)又E是PC的中点,所以,EF∥AP.(4分)∵EF在面PAD外,PA在面内,∴EF∥面PAD(6分)(2)∵面PAD⊥面ABCD,CD⊥AD,面PAD∩面ABCD=AD,∴CD⊥...
推荐
如图,四棱锥P-ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点. (1)证明:EF∥面PAD; (2)证明:面PDC⊥面PAD.
四棱锥P-ABCD中,ABCD是矩形,三角形PAD为等腰直角三角形,角APD=90度,面APD垂直面ABCD,AB=1,AD=2,E...
四棱锥P-ABCD中,ABCD为平行四边形,△PAD为等腰直角三角形,∠APD=90°,面PAD垂直面ABCD,
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E,F分别为PC,BD的中点.证明 (1)EF∥平面PAD; (2)EF⊥平面PDC.
四棱锥P-ABCD中,ABCD为矩形,△PAD为等腰直角三角形,∠PAD=90º,面PAD⊥面ABCD,AB=1,AD=2,
完成成语填空()毛()角
高中生物,为何垂体病变会导致抗利尿激素减少.抗利尿激素是由下丘脑产生,垂体释放
根据鲸的形体特征发明了轮船还是潜艇?
猜你喜欢
1.某高速公路工地需要实施爆破,操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,人跑步的速度是5米/秒.问导火线必须超地多长,才能保证操作人员的安全?
如图,在水平面上的箱子内,带异种电荷的小球a、b用绝缘细线分别系于上、下两边,处于静止状态.地面受到的压力为N,球b所受细线的拉力为F.剪断连接球b的细线后,在球b上升过程中地面
对于二次三项式x2-10x+36,小聪同学作出如下结论:无论x取什么实数,它的值都不可能等于11.你是否同意他的说法?说明你的理由.
1.5V干电池是5号电池吗?
是不是所有的固体都可以升华?
在周一到周五,认真完成老师布置的作业,在周六,练习打篮球用英语怎么说
在半径是20厘米的圆中,截下两个面积最大的等圆,剩余部分面积是多少
平行四边形ABCD中,顶点A(1,2),B(3,-3),C(4,-1),求向量DC的坐标和D点的坐标?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版