设A,B是2个三阶矩阵,且detA=-2,det,B=-1,则det(-2A^2B^-1)=32 32是怎么算出来的?
人气:290 ℃ 时间:2019-11-12 05:12:11
解答
因为若矩阵M是n阶可逆方阵,k为常数,则det(k*M)=k^n*detM.
简单的说,就是常数k与矩阵乘积的行列式的求法,先把常数k乘进矩阵中每一个元素,再对得到的矩阵求行列式,即先把每一行都提一个常数k出来,就是k的n次方,再乘以原矩阵的行列式就可.所以上面的式子是32:
det(-2A^2B^-1)=(-2)^3*detA*detA*(detB)^(-1)=-8*2*2*(-1)=32
推荐
猜你喜欢
- 幼儿园有50个小朋友,现有玩具240件,把这些玩具分给小朋友,是否一定有小朋友得到6件或6件以上玩具
- 习题1-1 第三题
- 已知一个直角三角形的周长4+2√6,斜边上中线为2,则这个三角形面积为
- 某容器最多能装500G酒精,现要装2.25KG密度为0.9X10的3次方KG/M的某种液体,至少需要此容器多少个
- Yesterday I cleaned the room and washed up. I did my homework, _____. A.as well B.too C.either
- 当k= _ 时,代数式x2-3kxy-2y2+3xy+1中不含xy项.
- x=a^2b^2+5,y=2ab-a^2-4a,若x>y,则实数a,b满足的条件是
- C语言编程——选择排序法,要求:由主函数调用排序子函数,对n个整数进行从小到大的排序,谢了