>
数学
>
一动圆与定圆X^2+Y^2-6Y=0相切,且与X轴相切,求动圆圆心的轨迹方程
人气:366 ℃ 时间:2020-03-26 08:46:05
解答
因为 x^2+y^2-6y=0
故 x^2+(y-3)^2=9
不妨设动圆半径为R 圆心为(x,y)
因为与定圆相切
则 (R+3)^2=x^2+(y-3)^2……①
因为与x轴相切
则 R=|y| ……②
解①②得
y^2+6|y|+9=x^2+y^2-6y+9
若y>0 则 x^2=12y
若y<0 则 x=0
如果内切也是一样的
如果内切
方程①就应该是 (3-R)^2
但 R正负未知,所以上面已经把这种情况讨论了
内切 外切 答案是一样的
推荐
一动圆与定圆X^2+Y^2-6Y=0相切,且与X轴相切,求动圆圆心的轨迹方程
一动圆过定点A(1,0),且与圆(x+1)^2+y^2=16相切,求动圆圆心的轨迹方程.
求与X轴相切,且与圆x^2+y^2=1外切的动圆圆心的轨迹方程
已知定圆C:(x-1)2+y2=1,若动圆P与定圆C外切,并且与y轴相切,那么动圆圆心P的轨迹方程是_.
一动园过定点A(-2,0)且与定圆(x-2)^2+y^2=12相切 (1)求动圆圆心C的轨迹方程
根据所学课文,解释下列成语.1、引喻失义:2、妄自菲薄:3、心旷神怡:4、政通人和:
根号12+根号27除以再根号3等于多少
如果一个人站在电梯里 那么此时电梯的总重量是不是人+电梯的重量?
猜你喜欢
英语翻译
《青蛙军团爱地球》(伍美珍) 《爱找东西的男孩》(郁雨君) 《天使在身边》(商晓娜) 《书香童年—丁香
英语翻译
first thing first
不同PH值的溶液的配制(PH=3-13)
用swim across造句
sort
这是世界上最美丽的陵墓-泰姬陵.人们称她是"大理石上的诗".印度诗人泰戈尔说她是"永恒面颊上的一滴眼泪"这是为什么呢?
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版