利用换底公式证明:log(a)b.log(b)c.log(c)a=1
rt
.是乘号
人气:147 ℃ 时间:2020-01-28 18:48:24
解答
log(a)b.log(b)c.log(c)a=1
证明:
∵log(a)b.log(b)c.log(c)a=log(a)b.(log(a)c/log(a)b).(1/log(a)c)=1
∴log(a)b.log(b)c.log(c)a=1
注:上等式换底后约去分式中 log(a)b 和 log(a)c
推荐
猜你喜欢
- 造句:天衣无缝和相安无事,要造一个句子,不能分开
- 习作:我喜欢的书中人物------200字左右
- 一根钢管长5米,平均截成8段,每段是这根钢管的(—);5段是这根钢管的(—),长(—)米
- 今天的事是我的错,对不起,请大家原谅,如果大家不能谅解,我会选择离开用英语怎么说啊
- 高一地理问题
- huo是三拼音节吗
- 水果店远处两框苹果共75千克.如果将甲框苹果的6分之1装入乙框,这时,甲乙两框苹果重量比是2;3,甲乙原来两框各有多少千克苹果
- 2a-3b/9=3a-2b/3=2