设▲ABC的三个内角A、B、C所对的边a、b、c、且满足csinA=acosC.若根号3sinA-cos(B+π/4)的最大值
求取得最大值时角A、B的大小
人气:205 ℃ 时间:2020-03-29 04:34:00
解答
csinA=acosC => a/c = sinA/cosC
由正弦定理 a/c = sinA/sinC
∴ sinC =cosC => ∠C = π/4
∴ ∠A + ∠B = 3π/4 ==> ∠B = 3π/4 - ∠A
3sinA - cos(B+π/4)
= 3sinA - cos( 3π/4 - A +π/4)
= 3sinA + cosA
= √10*sin(A+θ)
其中 sinθ = √10/10;tanθ = 1/3
∵ 0< tanθ < √3/3
∴ 0 < θ < π/6
∠A 的取值范围是 (0,3π/4 )
因此 3sinA - cos(B+π/4) = √10*sin(A+θ) 的最大值为√10;
无法得出 A为直角的结论,只要 C= π/4,等式就成立;
A 可在(0,3π/4 )上任意取值.
推荐
- 在△ABC中,角A,B,C所对的边分别为a,b,c且满足sinA/cosC=a/c. (Ⅰ)求角C的大小; (Ⅱ)求3sinA−cos(B+π4)的最大值,并求取得最大值时角A的大小.
- 在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosc.求√3sinA-cos(B+π/4)的最大值
- 在△ABC中,满足csinA=acosC 1、求角C大小 2、求√3sinA-cos【B+(π/4)】最大值并求取最大值时A,B大小
- 在锐角△ABC中,角A、B、C所对的边分别为a、b、c,若b=2,B=π3且csinA=3acosC,则△ABC的面积为( ) A.3 B.23 C.2 D.22
- 三角形ABC中角A.B.C所对的边分别为a,b,c且满足csinA=acosC
- 将生锈的铁钉投入到稀盐酸中,刚开始观察到的现象是什么?其原因是(用化学式表示)
- 准备一副扑克牌,去掉J、Q、K和大、小王.从剩下的牌中随意拿出四张放在桌子上,根据这四张牌上的数字进行
- 谁能告诉我/biskit/是哪个单词的音标
猜你喜欢
- 有一批书,分给公司的所有人,若每人一本,则还差19本,若每个部门派7本,则多出1本,如果再招聘2个人进公司,则正好每个部门有9人,问:总共有( )个部门.
- 满足条件{1}包含于A包含于{1,2,3,4}的集合A的个数为、(能给一下解析过程吗)
- 用千里迢迢,娓娓动听,大名鼎鼎,风尘仆仆,文质彬彬组织成一句话,不少于100字
- 七大洲中跨经度最广的是_,跨纬度最广的是_.
- as...as possible组句
- Let's send her a computer game改为同义句
- 用描点法画出y=-1/2x²的函数图象并指出函数图象的变化趋势
- 已知m^2+m-1=0,求代数式m^3+5m^2+3m-2012的值