二次函数f(x)=ax2+bx(a≠0),满足f(x+1)为偶函数,且方程f(x)=x有相等实根.
(1)求f(x)的解析式;
(2)求f(x)在[m,m+1]上的最大值.
人气:179 ℃ 时间:2019-10-17 01:05:16
解答
(1)∵f(x+1)为偶函数,∴f(-x+1)=f(x+1),即a(-x+1)2+b(-x+1)=a(x+1)2+b(x+1),整理,得2a+b=0①;又∵f(x)=x有相等实根,即ax2+bx=x有相等实根,∴b=1,从而解得a=-12;∴f(x)=-12x2+x;(2)...
推荐
猜你喜欢
- 在【0,1】区间内任取两个数,求两数乘积小于1/4的概率
- 一条鱼的质量等于他本身质量的8分之7再加上8分之7千克,这条鱼重多少千克
- 氮化镁与盐酸反应会生成什么?
- 写出数列3,7,15,31,63…的一个通项公式
- 将2x²+5x+2分解因式
- 一堆煤,第一次运运走了25%,第二次运走的是第一次的50%,第三次运走余下的20%.现在还剩40吨煤,这堆...
- 55555.5555除以1234.5679等于多少
- m的4次方-6m的平方+9(在实数范围内)