用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根.设F
用罗尔中值定理证明:方程3ax^2+2bx-(a+b)=0在(0,1)内有实根.
设F(x)=ax^3+bx^2-(a+b)x,则F(x)在[0,1]上连续,在(0,1)内可导,F(0)=F(1)=0,所以由罗尔中值定理,至少存在一点ξ∈(0,1),使得F'(ξ)=0.F'(x)=3ax^2+2bx-(a+b),所以3aξ^2+2bξ-(a+b)=0,所以ξ是方程方程3ax^2+2bx-(a+b)=0在(0,1)内的一个实根
为什么要把f(x)重新还原成导函数啊?好像定理里没有这一条吧?
人气:269 ℃ 时间:2019-10-18 08:11:22
解答
F(X)是原函数f(x)=3ax^2+2bx-(a+b)的积分...LZ是不是看错了... 罗尔定理
如果函数f(x)满足:(1)在闭区间[a,b]上连续(其中a不等于b);(2)在开区间(a,b)内可导;(3)在区间端点处的函数值相等,即f(a)=f(b), 那么在区间(a,b)内至少存在一点ξ(a
推荐
- 对于任意不全为0的实数a,b,关于x的方程3ax2+2bx-(a+b)=0在区间(0,1)内( ) A.无实根 B.恰有一实根 C.至少有一实根 D.至多有一实根
- 罗尔中值定理怎么证明
- 请问一下,f{x}=3ax+2bx+c.若a+b+c=0.f{0}大于0,f{1}>0,求证;方程f{x}=0在{0,1}内有两个实根.急!先谢
- 二次函数f(X)=3ax^2+2bx+c,若a+b+c=0,f(0)*f(1)>0求证方程f(X)=o有实根
- 二次函数f(X)=3ax^2+2bx+c,若a+b+c=0,f(0)*f(1)>0求证,(1) -2
- d(y)/d(x)=cos(x+y) 的通解怎么求啊
- 1:三棱锥S-ABC侧棱为L,底面边长为a,写出求此三棱锥S-ABC体积的一个算法
- 西瓜、苹果、香蕉和牛奶可不可以一起吃
猜你喜欢