如图四棱锥P-ABCD中,底面ABCD为矩形,PA垂直平面ABCD,E是PD中点,1证明PB平行平面AEC,
人气:149 ℃ 时间:2019-08-19 04:31:36
解答
(Ⅰ)证明:设BD与AC 的交点为O,连结EO,
∵ABCD是矩形,
∴O为BD的中点
∵E为PD的中点,
∴EO∥PB.
EO⊂平面AEC,PB⊄平面AEC
∴PB∥平面AEC;
手机提问的朋友在客户端右上角评价点【满意】即可
推荐
- 四棱锥p-ABCD中 底面ABCD为矩形,PD垂直底面,AD=PD,E F分别为CD PB 中点 求证 EF垂直平面PAB
- 如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD = AB = a,E是PB的中点,F为AD中点.
- 如图,在四棱锥p-ABCD中,M,N分别为PB,PD的中点,证明:MN‖平面ABCD
- 已知四棱锥P-ABCD的底面是菱形.PB=PD,E为PA的中点. (Ⅰ)求证:PC∥平面BDE; (Ⅱ)求证:平面PAC⊥平面BDE.
- 在底面为平行四边形的四棱锥P-ABCD中,点E是PD的中点,求证:PB与平面AEC平行
- 汽车上有男乘客45人,若女乘客人数减少10%,恰好与男乘客人数的3/5相等,汽车上女乘客有_人.
- 记叙文,读书的滋味
- 小莉坐在班上的位置,无论从哪个方向用数对表示都是(3,3),这个班共有( )人?
猜你喜欢