∴∠IBC=
1 |
2 |
1 |
2 |
∴∠IBC+∠ICB=
1 |
2 |
∵∠ABC+∠ACB=180°-∠A=140°,
∴∠IBC+∠ICB=70°,
∴∠BIC=180°-(∠IBC+∠ICB)=110°,
连接IF、IE,

∵圆I是△ABC的内切圆,
∴∠IFA=∠IEA=90°,
∵∠A=40°,
∴∠FIE=360°-∠IFA-∠IEA-∠A=140°,
∴∠EDF=
1 |
2 |
答:∠BIC=110°,∠FDE=70°.
(2)α=180°-β.
理由如下:由圆周角定理得:∠FIE=2∠FDE,
由(1)知:2∠FDE=180°-∠A,
即∠A=180°-2∠FDE,
∴∠A=180°-∠EIF,
由(1)知:2∠FDE=180°-∠A,
∴∠A=180°-2∠FDE=180°-2β,
∠BIC=180°-(∠IBC+∠ICB)=180°-
1 |
2 |
=180°-
1 |
2 |
1 |
2 |
∴∠BIC=α=90°+
1 |
2 |
即α=180°-β.