设函数f(x)对任意实数x,y,都有:f(x+y)=2f(y)+x²+2xy-y²+2x-2y,则f(x)=?
人气:348 ℃ 时间:2019-10-23 07:21:58
解答
依题,令x=y=0,有:
f(0)=2f(0) 解得:f(0)=0
令y=0,有:
f(x)=2f(0)+x^2+2x 因为f(0)=0
所以:f(x)=x^2+2x
推荐
- 若函数f(x)对任意实数x,y均有f(x+y)=2f(x)+x²+2xy-y²+3x-3y,求f(x)的解析式
- 已知:函数f(x)对一切实数x,y都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0
- 函数f(x)对一切实数x,y都有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0
- 已知函数f(x)对一切实数x.y,都有f(x+y)-f(y)=x(x+2y+1)成立,且f(1)=0.(一),求f(0)的值 ...
- 函数f(x)对一切实数x,y均有f(x+y)-f(y)=(x+2y+1)x成立,且f(1)=0,
- you shouldn't be late to class again 改错
- 化简[(ab+1)(ab-1)-2a^2b^2+1]/ab
- he asked his daughter what she wanted him to dring for her
猜你喜欢