求经过7x+8y=38及3x-2y=0的交点且在两坐标轴上截得的截距相等的直线方程.
人气:165 ℃ 时间:2020-03-28 01:07:28
解答
易得交点坐标为(2,3)设所求直线为7x+8y-38+λ(3x-2y)=0,即(7+3λ)x+(8-2λ)y-38=0,令x=0,y=388−2λ,令y=0,x=387+3λ,由已知,388−2λ=387+3λ,∴λ=15,即所求直线方程为x+y-5=0.又直线方程不含...
推荐
猜你喜欢
- 设P为双曲线x24-y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是_.
- steal,rob,cheat的详细用法,
- 把氢氧化钠固体放在纸上称量 这句话对吗?
- 填带“过”的两字词语
- 函数y=tanx-tan3x1+2tan2x+tan4x的最大值与最小值的积是 _ .
- 方程组a1x+b1y=c1,a2x+b2y=c2的解为X=3,Y=4,简便方法 ,解方程组3a1x+2b1y=5c1,3a2x+2b2y=5c2的解
- 布袋中有足够多的5种不同颜色的球,最少取多少个才能保证其中一定有3个颜色一样的球?
- 做一个无盖的圆柱形铁皮水桶,高是70cm,底面直径是50cm,至少需要铁皮多少平方厘米