大一高数 求导题.
求导
1.y=(1/3)ln[ln(ln3x)] 我算的结果是1/[3xln3xln(ln3x)] 答案是1/[xln3xln(ln3x)]
2.设f(0)=0且f'(0)=2,求lim x->0 f(x)/sin2x .
人气:255 ℃ 时间:2020-05-09 01:57:11
解答
y=[(1/3)ln[ln(ln3x)] 求导
(1/3)*1/ln(ln3x)] * [ln(ln3x)] 后面这一个继续求导
(1/3)*1/ln(ln3x)] * 1/ln3x * ln3x 最后面这个继续求导
(1/3)*1/ln(ln3x)] * 1/ln3x * 1/3x*3= 1/x*ln(ln3x)]*ln3x *1/3
第二题
f(x)/sin2x=f(x)-f(0)/x *2x/sin2x *1/2 =f'(0)*1*1/2=1
楼上第二题是错的
没说f(x)的导数是连续的,不能用洛必达法则
推荐
猜你喜欢
- 设P为双曲线x24-y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是_.
- steal,rob,cheat的详细用法,
- 把氢氧化钠固体放在纸上称量 这句话对吗?
- 填带“过”的两字词语
- 函数y=tanx-tan3x1+2tan2x+tan4x的最大值与最小值的积是 _ .
- 方程组a1x+b1y=c1,a2x+b2y=c2的解为X=3,Y=4,简便方法 ,解方程组3a1x+2b1y=5c1,3a2x+2b2y=5c2的解
- 布袋中有足够多的5种不同颜色的球,最少取多少个才能保证其中一定有3个颜色一样的球?
- 做一个无盖的圆柱形铁皮水桶,高是70cm,底面直径是50cm,至少需要铁皮多少平方厘米