若f(n)=1/1+1/(1+2)+1/(1+2+3)+...+1/(1+2+3+...+n),则f(k+1)-f(k)= ,f(1)=
是用数列归纳法的,答得好给悬赏金的
hin52过程给下阿
人气:345 ℃ 时间:2019-12-29 15:18:00
解答
1+2+3+...+n=n(n+1)/2
所以:f(n)=1/1+2/(2*3)+2/(3*4)+...+2/n(n+1)
=2[1-1/2+1/2-1/3+1/3-1/4+...+1/n-1/(n+1)]
=2[1-1/(n+1)]
=2n/(n+1)
f(k+1)-f(k)=2(k+1)/(k+2)-2k/(k+1)=2/(k+1)(k+2)
f(1)=1
推荐
猜你喜欢
- 一项工程,甲独坐要9小时,乙独做要12小时,如果甲先做1小时,然后乙接替甲做1小时,再由甲接替
- 冷水吸收的热量:Q吸=cm(t1-t0),∵Q吸=Q放,∴热水放出的热量:Q放=c2m(t0′-t1)=cm(t1-t0),
- 英语翻译
- 4a-2b+c=o,16a+4b+c=0,(4ac-b^2)/(4a)=9 怎么解
- 已知两个数的积是3072,最大公约数是16,求这两个数答案?
- jean is as busy as a bee的意思?
- He is running这句话为什么run要加ning
- 棱长六米的正方体水池占地面积是36平方米.是对还是错