已知圆心角为120°的扇形AOB半径为1,C为弧AB的中点,点D,E分别在半径OA,OB上,若CD^2+CE^2+DE^2=2,则OD+OE的
最大值是多少
人气:397 ℃ 时间:2019-09-01 08:11:00
解答
此题考查的是余弦定理和不等式变形
余弦定理:CD^2=OD^2+CO^2- 2 OD*OC*cos60度=OD^2-OD+1
CE^2=OE^2+CO^2- 2 OE*OC*cos60度=OE^2-OE+1
DE^2=OE^2+DO^2- 2 OE*OD*cos120度=OE^2+DO^2+ OE*OD
CD^2+CE^2+DE^2=2
OD^2-OD+1+OE^2-OE+1+OE^2+DO^2+ OE*OD=2
2OD^2-OD+2OE^2-OE+ OE*OD=0
1/2(OD+OE)^2+3/2(OD^2+OE^2)-OD-OE=0
由不等式a^2+b^2>=(a+b)^2/2
得:OD^2+OE^2>=(OD+OE)^2/2
所以0=1/2(OD+OE)^2+3/2(OD^2+OE^2)-OD-OE>=1/2(OD+OE)^2+3/4(OD+OE)^2-(OD+OE)
0>=1/2(OD+OE)^2+3/4(OD+OE)^2-(OD+OE)
0>=5/4(OD+OE)^2-(OD+OE)
得: 0 =< (OD+OE)=< 4/5
OD+OE的最大值是4/5
推荐
- 已知圆心角120°的扇形AOB,r为1,c为弧AB中点,点D,E分别在半径OA,OB上,若CD^2+CE^2+DE^2=26/9求(OD+OE)max
- 将一块圆心角为120°,半径为20 cm的扇形铁片截成一块矩形,如图,有2种裁法:让矩形一边在扇形的一半径OA上或让矩形一边与弦AB平行,请问哪种裁法能得到最大面积的矩形,并求出这个最
- 已知圆心角为120°的扇形AOB半径为1,c为弧AB中点,点D,E分别在半径OA,OB上,若CD^2+CE^2+DE^2=5/2,则OD+OE的取值范围 (1+ √5)/4≤ OD+OE≤ ( 2+√14)/5,
- 已知⊙o的半径oa=6,∠aob=120°,则扇形aob面积为()
- 已知圆心角为120度的扇形AOB半径为1,C为AB中点,点D、E分别在半径OA、OB上,若CD平方+CE平方+DE平方=5/2
- 用联想的方式写2句话!注意:要用标点符号写出联想!
- 为什么说离子交换色谱法是分离蛋白质的最佳方法?
- He who would do great things should not attempt them all alone.的中文意思和谚语
猜你喜欢