关于证明牛顿莱布尼兹公式这里我有个问题:
每个小区间函数的增量分别为Δy1,Δy2,…,Δyn,显然
f(b)-f(a)=Δy1+Δy2+…+Δyn
=f′(x1)Δx1+o(Δx1)+f′(x2)Δx2+o(Δx2)+…+ f′(xn)Δxn+o(Δxn)
=f′(x1)Δx1+o1Δx1+f′(x2)Δx2+o2Δx2+…+ f′(xn)Δxn+onΔxn
=f′(x1)Δx1+f′(x2)Δx2+…+ f′(xn)Δxn+o1Δx1+…+onΔxn,
显然Δx1+Δx2+…+Δxn=b-a,并当每个子区间的长Δxi→0时,o1→0,o2→0,…,on→0,容易证明o1Δx1+…+onΔxn→0,故
f′(x1)Δx1+f′(x2)Δx2+…+ f′(xn)Δxn→f(b)-f(a)
o1Δx1+…+onΔxn这里当Δxi→0好像是有无穷多个数,怎么证得o1Δx1+…+onΔxn→0?
人气:313 ℃ 时间:2020-02-05 20:29:08
解答
这是哪块的公式?我没有见过这样的牛顿莱布尼茨公式,我只见过解定积分里的牛顿莱布尼茨公式,而且这个公式的证明也不是你给的这样的.
推荐
猜你喜欢
- 有一批书,分给公司的所有人,若每人一本,则还差19本,若每个部门派7本,则多出1本,如果再招聘2个人进公司,则正好每个部门有9人,问:总共有( )个部门.
- 满足条件{1}包含于A包含于{1,2,3,4}的集合A的个数为、(能给一下解析过程吗)
- 用千里迢迢,娓娓动听,大名鼎鼎,风尘仆仆,文质彬彬组织成一句话,不少于100字
- 七大洲中跨经度最广的是_,跨纬度最广的是_.
- as...as possible组句
- Let's send her a computer game改为同义句
- 用描点法画出y=-1/2x²的函数图象并指出函数图象的变化趋势
- 已知m^2+m-1=0,求代数式m^3+5m^2+3m-2012的值