记数列An前n项积为Tn=1-An,记Cn=1/Tn.数列bn的前n项和为Sn且Sn=1-bn.(1)证明Cn是等差数列;(2)若Tn(nbn+n-2)≤kn对n属于正整数恒成立,求实数k的取值范围
人气:356 ℃ 时间:2019-10-05 00:50:30
解答
(1) n=1时 T1=1-a1=a1 a1=1/2
n=2时 T2=a1*a2=(1/2)a2=1-a2 a2=2/3
n=3时 T3=a1*a2*a3=(1/3)a3=1-a3 a3=3/4
假设当n=k时 ak=k/(k+1) Tk=1-ak 成立,
n=k+1时 T(k+1)=Tk*a(k+1)=(1-ak)*a(k+1)=[1/(k+1)]*a(k+1)=1-a(k+1)
a(k+1)=(k+1)/(k+2)
所以 an=n/(n+1) Tn=1-an=1/(n+1) Cn=n+1
(2)同理可得 bn=(1/2)^n
[1/(n+1)][n(1/2)^n+n-2]≤kn n(1/2)^n+n-2≤kn^2+kn n(1/2)^n≤kn^2+(k-1)n+2
(n+1)(1/2)^(n+1)-n(1/2)^n=(1-n)(1/2)^(n+1)≤0 且当n=1时相等 当n>1时 为减数列
所以n(1/2)^n在n=1或2时取得最大值 为1/2
kn^2+(k-1)n+2≥1/2 令f(n)=kn^2+(k-1)n+3/2≥0
①当k=0时 有-n+3/2≥0 只有n=1时成立 舍
②k>0 对称轴 -(k-1)/2k≤1 k≥1/3 f(1)=2k+1/2≥0 k≥-1/4
所以k≥1/3
推荐
- 等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
- 等差数列{an},{bn}的前n项分别为Sn,Tn,若Sn/Tn=2n/3n+1,则an/bn=多少?
- 设等差数列{an}的前n项和为Sn,且Sn=((an+1)/2)平方(n属于正整数),若bn=(-1)^nSn,求数列{an}的前n项和Tn
- 两等差数列{an}和{bn},前n项和分别为Sn,Tn,且SnTn=7n+2/n+3,则a2+a20b7+b15=_.
- 设数列{an},{bn}都是等差数列,它们的前n项和分别为sn,Tn
- 有限个无穷小的积还是无穷小,那么无限个呢?
- 已知ab n的平方是关于a、b的三次单项式,则n=( )
- 用代入法解下列方程要过程 (1) a=2b+3 a=3b+20 (2) x-y=13 x=6y-7 (3)x-y=4 4x+2y=-1 (4)5x-y=110 9y-x=11
猜你喜欢
- 造句:天衣无缝和相安无事,要造一个句子,不能分开
- 习作:我喜欢的书中人物------200字左右
- 一根钢管长5米,平均截成8段,每段是这根钢管的(—);5段是这根钢管的(—),长(—)米
- 今天的事是我的错,对不起,请大家原谅,如果大家不能谅解,我会选择离开用英语怎么说啊
- 高一地理问题
- huo是三拼音节吗
- 水果店远处两框苹果共75千克.如果将甲框苹果的6分之1装入乙框,这时,甲乙两框苹果重量比是2;3,甲乙原来两框各有多少千克苹果
- 2a-3b/9=3a-2b/3=2