数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证:(1)数列{Sn/n}是等比数列
(2)Sn+1=4an
人气:241 ℃ 时间:2019-08-20 10:54:24
解答
证明: (1) 注意到:a(n+1)=S(n+1)-S(n) 代入已知第二条式子得: S(n+1)-S(n)=S(n)*(n+2)/n nS(n+1)-nS(n)=S(n)*(n+2) nS(n+1)=S(n)*(2n+2) S(n+1)/(n+1)=S(n)/n*2 又S(1)/1=a(1)/1=1不等于0 所以{S(n)/n}是等比数列...
推荐
- 数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=n+2/nSn(n=1,2,3.),证明(1)数列{Sn/n}是等比数列.(2)S(n+1)=4an
- 数列{an}的前n项和记为sn,已知a1=1,An+1=(n+2)sn/n 1数列{sn/n}是等比数列 2sn+1=4an
- 数列{an}的前n项和记为Sn已知a1=1,an+1=n+2/n*Sn(n=1,2,3,…).求证:(1)数列{Sn/n}是等比数列
- 已知数列{an}的前n项和记为Sn,已知a1=1,a(n+1)=[(n+2)/n]Sn,证明:(1)数列{Sn/n}是等比数列;(2)S(n+1)=4Sn
- 数列{an}的前n项和记为Sn,已知a1=1,an+1=n+2/nSn(n=1,2,3,…).证明: (Ⅰ)数列{Snn}是等比数列; (Ⅱ)Sn+1=4an.
- Time()never come again
- 已知函数f(x)=log1/2(a^2-3a+3)^x,若y=f(x)在(-∞,+∞)上为减函数,求a的取值范围
- 若A是对称矩阵,B是反对称矩阵,AB-BA是否为对称矩阵?证明
猜你喜欢