设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y″+p(x)y′+q(x)y=f(x)的解,c1,c2是任意常数,则该非齐次方程的通解是( )
A. c1y1+c2y2+y3
B. c1y1+c2y2-(c1+c2)y3
C. c1y1+c2y2-(1-c1-c2)y3
D. c1y1+c2y2+(1-c1-c2)y3
人气:118 ℃ 时间:2020-04-15 18:06:37
解答
因为:y1,y2,y3线性无关,
所以:y1-y3,y2-y3是线性无关的.
又因为:函数y1,y2,y3都是二阶非齐次线性方程y″+p(x)y′+q(x)y=f(x)的解,
所以:c1(y1-y3)+c2(y2-y3)是y″+p(x)y′+q(x)y=0的通解,
根据二阶线性非齐次微分方程的结构可知:
c1(y1-y3)+c2(y2-y3)+y3=c1y1+c2y2+(1-c1-c2)y3是y″+p(x)y′+q(x)y=f(x)的通解,
故选:D.
推荐
- 三个函数:y1(x),y2(x),y3(x)都线性无关,是否能肯定[y1(x)-y2(x)]与[y2(x)-y3(x)]也一定线性无关?
- 设线性无关的函数y1(x),y2(x),y3(x)都是二阶非齐次线性方程y''+py'+qy=f(x)的解,
- 已知二阶非齐次线性微分方程的三个特解为y1=1,y2=x,y3=x^2,写出该方程的通解.
- 设函数y1(x),y2(x),y3(x)都是线性方程y''+P(x)y'+Q(x)y=f(x)的特解,其中P,Q,f都是已知函数,则对任意
- 已知y1=xe^x,y2=xe^2x,y3=e^2x,y4=x是二阶线性微分函数y''+p(x)y'+q(x)y=f(x)的特解,求通解
- 这道题的C选项为何不对? (英语) 谢谢了
- 可以用什么词这个词来形容蟋蟀的劳动
- 求一道数学题 :1+3+5+7+.+99是多少?
猜你喜欢