设a为实数,设函数f(x)=a*根号下(1-x^2)+根号下(1+x)+根号下(1-x)的最大值为g(a)
(1).设t=根号下(1+x)+根号下(1-x),求t的取值范围,并把f(x)的表示为t的函数m(t);
(2).求g(a)
(3)试求满足g(a)=g(1/a)的所有实数a.
让我看的懂
人气:436 ℃ 时间:2019-08-18 04:05:46
解答
1t=√(1+x)+√(1-x)t²=1+x+1-x+2√[(1+x)(1-x)]=2+2√[(1+x)(1-x)]显然t²的范围是(2,4),t的范围就是[√2,2]所以:√(1-x²)=√[(1+x)(1-x)]=(t²-2)/2(因为此处定义域是符合要求的,所以可以拆...
推荐
- 设A为实数,记函数f(x)=1/2ax^2+x-a,(x属于(根号2,2))的最大值为g(a),求g(a)
- 设a为实数,记函数f(x)=a根号(1-x^2)+根号(1+x)+根号(1-x)的最大值为g(a),求g(a)
- 设a为实数,记函数f(x)=a根号1-x2+根号1+x+根号1-x的最大值为g(a),qiu
- 3.函数f(x)=x-a乘以根号下x,在[1,4]上单调递增,则实数a的最大值为
- 已知a是实数函数f(x)=根号x(x-a),求函数f(x)的单调区间
- 美 无处不在800字作文,最好是自己写的.
- 集合{1,2,…,2011}的元素和为奇数的非空子集的个数为()求详细过程步骤谢谢 .
- 某同学用毫米刻度尺测量一支铅笔的长度,得出如下数据,这些数据中比较合理,更接近真实值的是( )
猜你喜欢