f′(x)=
| 2 |
| x |
| 2a |
| e |
| 2(e−ax) |
| ex |
当a=0时,由f′(x)=
| 2 |
| x |
当a>0时,由f′(x)=
| 2(e−ax) |
| ex |
| e |
| a |
当a<0时,由f′(x)=
| 2(e−ax) |
| ex |
| e |
| a |
所以当a=0时,函数f(x)的递增区间是(0,+∞);
当a>0时,函数f(x)的递增区间是(0,
| e |
| a |
当a<0时,函数f(x)的递增区间是(-∞,
| e |
| a |
(Ⅱ)因为f′(x)=
| 2 |
| x |
| 2 |
| e |
| 2(e−x) |
| ex |
所以以p1(x1,f(x1))为切点的切线的斜率为
| 2(e−x1) |
| ex1 |
以p2(x2,f(x2))为切点的切线的斜率为
| 2(e−x2) |
| ex2 |
又因为切线过点p(0,t),
所以t−lnx12+
| 2x1 |
| e |
| 2(e−x1) |
| ex1 |
| 2x2 |
| e |
| 2(e−x2) |
| ex2 |
解得,x12=et+2,x22=et+2.则x12=x22.
由已知x1≠x2
所以,x1+x2=0.
